Towards Resilient Autonomous Navigation of
Drones

Angel Santamaria-Navarro*, Rohan Thakker*, David Fan, Benjamin Morrell,
and Ali-akbar Agha-mohammadi

angel.santamaria.navarro@jpl.nasa.gov
WWW home page: http://angelsantamaria.eu
NASA-Jet Propulsion Laboratory, California Institute of Technology
Oak Groove Dr. 4800 Oak Grove Dr, Pasadena, CA 91109, USA,

Abstract. Robots and particularly drones are especially useful in haz-
ardous environments which are unreachable to humans. In these situa-
tions, a reliable and robust state estimation solution is critical as the
environments can be very challenging for both perception and mobility,
such as in underground, disaster zones and collapsed buildings. Recently,
most of the research in robot state estimation has focused on developing
complex algorithms favoring accuracy. However, practically all these al-
gorithms make a big assumption: the main estimation engine will not fail
during operation. In contrast, we propose an architecture that pursues
robustness in state estimation by considering redundancy and hetero-
geneity in both sensing and estimation algorithms. The architecture is
designed to detect failures and adapt the behavior of the system to en-
sure safety. We present HeRO (Heterogeneous Redundant Odometry), a
stack of estimation algorithms running in parallel and supervised by a
resiliency logic. This logic carries out three main functions: a) perform
confidence tests both in data quality and algorithm health; b) re-initialize
those algorithms that might be malfunctioning; and ¢) ensure continuity
in the output while switching between estimation sources. The output
of the resiliency logic is fed directly to guidance and control modules of
the robot. The validation and utility of the approach is shown with real
experiments on a flying robot for the use case of autonomous exploration
of subterranean terrains, with particular results from the STIX event of
the DARPA Subterranean Challenge.

1 Introduction

Robots are especially useful for accomplishing tasks that would otherwise
be impossible for humans to do. From search and rescue missions in collapsed
mines, to package delivery for disaster response or commercial applications, and
even to exploration of other planetary bodies, robots have the potential to push

*Both authors contributed equally to this manuscript
Copyright 2019 California Institute of Technology. U.S. Government sponsorship
acknowledged.

2 A. Santamaria-Navarro et al.

the boundaries of human capability. However, much research in robotics focuses
on deploying robots in controlled, laboratory-like settings which are friendly
to humans. Deploying robots in real-world settings demands autonomy which
is robust and resilient to different types of failures. Such failures include loss
of communications with human operators, physical damage to sensors, loss of
perceptual data in degraded environments (e.g., dust, smoke or fog), and loss of
GPS/GNSS. These failures can often result in damage to the robot, injuries to
humans and failure of mission-critical tasks.

In this work we focus on a particular class of failures related to state estima-
tion. In the last few years, approaches tackling localization and state estimation
of robots (e.g., estimating position, orientation or velocity) have shown suffi-
cient maturity for using them as sensing feedback in robot controls, enabling au-
tonomous operations. However, failure in state estimation is often catastrophic,
cascading down through the whole autonomy stack. For example, poor position
estimates can result in inaccuracies in mapping and planning, while poor veloc-
ity estimates can result in dangerous and unstable control. These impacts are
of particular importance on aerial robots, where autonomous capabilities are
always limited by the state estimation quality.

Most state estimation methods are developed with a focus on the accuracy of
the estimations. For example, there is a comparison of more than 100 different
approaches in the visual odometry / SLAM evaluation of the KITTI dataset [1]
The most accurate methods usually fuse data from different sensors in a tightly
coupled fashion, with a single estimation engine (usually filtering or with itera-
tive optimization procedures). For example, fusing visual information (monocu-
lar, sterco or RGB-D camera configurations), range measurements and inertial
measurements (IMU)[2,3,4,5,6,7] In these approaches, a high precision outcome
is attained by jointly estimating a subset of past sensor poses and a number
of landmarks in the environment, creating a graph of constraints between robot
states and landmarks, which is incrementally solved. These solutions are compu-
tationally intensive and highly dependant on good outlier rejection techniques.
In case of unsuccessful rejection of invalid measurements (happening in most
of real situations), the resulting estimation accumulates drift or even fails, pro-
ducing catastrophic consequences on the controls. Moreover, relying on a single
tightly coupled approach to control the platform disables the option of an on-
line re-initialization in case of estimation failures. In contrast to tightly coupled,
one can use loosely coupled approaches where the state estimation is provided
by separate algorithms (dedicated to smaller number of sensors) and merged
afterwards, producing partial or complete state estimations. For example, in [8]
fuse measurements from an optical flow sensor that directly provides Cartesian
velocities with a vertical ranger and an IMU; or [9,10] which use relative pose
estimates from visual information as a prior for a LIDAR odometry estimation
to improve the accuracy. .

In order to address the fragility of state estimation methods in general,
we propose a generic framework for robots which tracks and adapts to these
types of failures. Inspired by lessons learned from the development of robotics

Towards Resilient Autonomous Navigation of Drones 3

in space exploration, we advocate an architecture for resilient robots which re-
lies on the notions of redundancy, identifying and characterizing failures, and
adapting to those failures (see Figure 1). This "resiliency architecture” can be
divided into three sub-systems: 1) Hardware 2) State Estimation and 3) Guid-
ance and Control. Resiliency in hardware means mechanical protections and
redundancy /heterogeneity in both sensors and actuators. Resiliency in state es-
timation is the main focus of this work and to this end we propose a novel
state estimation algorithm which intelligently combines heterogeneous, redun-
dant odometry algorithms (HeRO). Resiliency in guidance and control entails
guaranteeing appropriate plans and actions in accordance with the level of avail-
able information, especially with respect to the quality and status of the state
estimation.

The main idea behind our state estimation approach HeRO is to create a
resiliency logic which enables the use of several state estimation methods in
a loosely coupled solution. We run multiple odometry approaches in parallel
and supervise them with this resiliency logic, which can check both sensor data
integrity and the health of the algorithms. Methods which do not pass confi-
dence tests are required to reinitialize and, if this entails a switch in the estima-
tion source used for controls, the resiliency logic takes care of continuity in the
produced output. Hence, the resiliency logic is fed with all different estimation
modalities, chooses the best source for the controls and re-initializes those meth-
ods considered to be failed. To keep global track we maintain a separate global
localization module that is not required to run at a high frequency and is not
used to control the robot, but rather only updates global positioning. The main
advantages of the proposed scheme are the following:

¢ Allows hardware and software redundancy.

¢ Distributes among all algorithms the responsibility of overall success.

* Allows switching between methods and/or re-initializing a complete algo-
rithm.

¢ Enables parallel processing. Each individual estimator can run in its own
process or even hardware, and we take advantage of the resulting estimated
states.

* Minimizes the effect of a particular sensor failure. We can easily use methods
combining sensors based on different physical phenomena, minimizing those
zones where no estimation can be produced.

¢ Allows fast integration of new sensor modalities and methods. Methods can
be tested and tuned independently.

The main contributions of this paper are four-fold. First, we present a general
"resiliency architecture” for robust autonomous robots which leverages the con-
cepts of redundancy, identifying failures, and adapting to those failures. Next,
we present HeRO, a novel state estimation scheme which uses confidence tests on
raw data and state estimation quality to detect incorrect sensor measurements
or algorithm failures. Furthermore, we demonstrate how HeRO incorporates a
multiplexing logic that enables live switching between estimation methods and
re-initialization of algorithms or sensors that failed. Finally, we show results of

4 A. Santamaria-Navarro et al.

Hardware State Estimation (HeRO) Planning and Contral
Redundant/ Odometry St Behavior Planner
Hetesrggseg:asous Sensor Aorthims Quality || Goto || Wall |___| Close- Open-
- Measure- Point || Follow Loop Land| |Loop Land
| ___ments | Hardware- Algorithm-
Level Level Switching Wation Planner
Confidence 0. Confidence Logic -
Test Test M @ W oai > Map-Based Without Maps
: State
T Actuation i Estimate
E Values Caontroller
“““ 1 Position | | Velacity | | Attitude
Design 1?_ Renialize | Control Control Control

Fig. 1: General resiliency architecture.

experiments with a real robot to validate HeRO as well as the general resiliency
architecture. More details of these experiments are shown in the accompanying
video.

The remainder of this article is structured as follows. In the following section
2 we describe the general resiliency architecture, with corresponding concepts
and solutions. Validation and experimental results are presented in Section 3,
showing the feasibility of the proposed approach through real robot experiments
performed live at the STIX event in the DARPA subterranean challenge. Finally,
conclusions are given in Section 4.

2 Resiliency Architecture

We propose a resiliency architecture that not only takes failures into account,
but expects failures to occur. The architecture is designed so that the system
can autonomously detect and adapt to failures. The key concept behind this
architecture is to switch between heterogeneous and redundant state estimation
streams based on confidence checks that assess the quality of those streams.
The behaviour of the robot is also adapted by selecting the appropriate planner
and controller given what reliable state estimation information is available. Al-
though this work focuses on drone applications, the framework can be adapted
to any vehicle. This general architecture is depicted in Figure 1 and is described
hereafter.

2.1 Hardware

The robot hardware consists of a set of heterogeneous and redundant sensors that
are used by the state estimation sub-system (HeRO) to run multiple odometry
algorithms such as LiDAR-Inertial-Odometry (LIO), Visual-Inertial-Odometry
(VIO), Optical Flow, etc. These sensors can be a combination of, for example,
visible/infrared /thermal cameras, LiIDAR (scanners or height sensors), IMU,
Radar, and sonar. A variety of sensors are used to diversify the failure scenarios
for the different sensing modalities. Some examples of such scenarios in which
different modalities fail can be seen in Figures 3a to Figure 3b. Here, dust is

Towards Resilient Autonomous Navigation of Drones 5

(a) Visual failure with dust. (b) Thermal and visual failure with dust

and low thermal gradients.

F

(c) All exteroceptive sensors fail in intense
dust.

Fig. 2: Motivation for Heterogeneity and Redundancy of sensors. For (a)-(c), Top
left is visual, bottom left is thermal, right is a point cloud from a 360 degree
LiDAR.

causing issues with visual sensors (Figure 3a), as does low thermal gradient for
thermal cameras (Figure 3b). Intense dust can even cause issues with LiDARs
(Figure 3d), requiring reliance on sensors such as an IMU.

In addition to heterogeneity, redundancy in hardware is an important factor
to reduce chances of failure. For example, a drone performing fast rotations in
yaw has higher chances of failure if the VIO is running on a forward facing camera
compared to a downward facing camera. However, in the latter case, the VIO is
susceptible to failure if the drone is performing fast rotation in pitch, moving very
close to the ground at high speeds or if there is a lack of visual features on the
ground. Additionally, there may be different amounts of visual texture or lighting
facing forward, down or up. This can especially be the case in dark underground
environments, where illumination of the scene comes from light sources on the
robot (see Figure 3). Hence, using both cameras can reduce the chances of overall
system failure at the cost of more mass, power and computational resources.

Finally, a robust mechanical design of the robot hardware can allow auton-
omy to have significantly higher tolerances to avoid failure. For example, by
adding propeller guards one can reduce the safety constraint from completely
avoiding obstacles to bumping at low velocities. An important consideration in
this architecture is that incorporating redundancy, heterogeneity and mechanical
robustness on robots such as drones, can result in significantly lower flight time
due to weight and power constraints, as demonstrated in the validation section.

6 A. Santamaria-Navarro et al.

(a) Forward facing when near the (b) Upward facing when near the
ground (good lighting and tex- ground (poor lighting and limited
ture). detail).

(c) Forward facing when flying and (d) Upward facing in the same sce-
in a large tunnel, which shows poor nario as (c), showing good illumi-
illumination of the scene. nation and details of the ceiling.

Fig. 3: Contrasts in data from visual cameras pointing different directions, using
onboard illumination in an underground environment.

2.2 State Estimation using Heterogeneous-Redundant Odometry -
HeRO

Our objective is to estimate the following states along with their quality:

pER? Position of body frame w.r.t. world frame

v e R3 Velocity of body frame w.r.t. world frame represented in
body frame

acR? Acceleration of body frame w.r.t. world frame

R € 50(3) Orientation of body frame w.r.t. world frame

wcR3 Angular velocity of body frame w.r.t. world frame

acR3 Angular acceleration of body frame w.r.t. world frame

Q. € {Good, Bad} Quality of state x
Note that all attributes are represented in world frame unless stated otherwise.

Further, the quality of the state is restricted to binary but can be generalized to
higher resolutions and even continuous representation.

The states are used for motion planning and control, whereas the quality
metrics are used by the behavior planner to select the appropriate mobility
service for the current mission task (see Table 1).

Towards Resilient Autonomous Navigation of Drones 7

Table 1: Summary of behaviours given variations in quality of state estimates
State Quality: Good Medium Bad Doesn’t Matter

Case| Estimation Modality State Quality Mobility

No. |xIO|Height Est.|IMU|pz, py, Pz |?P= | Ve, vy|vz|a, R,w, o

Global
Local
Closed Loop on z
Local
Open Loop
Open Loop

CEIU!H;OJL\D)—!

HeRO consists of three main components: 1) Odometry Algorithms 2) Qual-
ity estimation 3) Switching logic. A set of odometry algorithms are executed on
the data from the set of sensors. The quality of each odometry source is anal-
ized by performing confidence checks on the data from sensors and odometry
algorithms. Finally, the switching logic uses the quality estimate to switch to
the appropriate odometry source for planning and control. The switching logic
also triggers re-initialization of the odometry algorithms once a failure is de-
tected (this capability has to be incorporated if the method is a commercial
off-the-shelf solution). These elements are detailed in the following.

A. Odometry Algorithms

The odometry algorithms considered are based primarily on visual, LIDAR and
thermal sensors, however Radar-based and sonar-based algorithms could simi-
larly apply. The primary motivation for the odometry algorithms is to provide
state information for control. In particular, there is a requirement for the posi-
tion orientation, velocity, and ideally acceleration to be estimated. A subset of
odometry algorithms is independent on the IMU, such as Visual Odometry (VO)
and LiDAR Odometry (LO). Such examples may include ORBSLAM2 (a VO)
and LOAM (a LO). These algorithms only estimate the position and orienta-
tion instead of the full state. Therefore, the output can be loosely fused with an
IMU in a filter, such as an Extended Kalman Filter (EKF) to give the required
velocity estimates. Alternatively, odometry algorithms can be tightly coupled,
where the IMU is integrated with how the primary sensor data is processed, and
the output includes the full state. ROVIO is such an example of Visual Inertial
Odometry (VIO).

While one of these algorithms can provide the required state information
for control, there are particular scenarios in which each of the algorithms fails.
These failure scenarios are different, though, for each modaility, as outlined in
Table 2. Visual, LiDAR, and Thermal Inertial Odometry Algorithms.

Visual methods that operate on images in the visible spectrum are suscepti-
ble to failure in the presence of dust/obscurants and featureless environments.
As expected, these approaches also fail in low-light environments, and one can
use active lights to illuminate the environment. However, in the presence of

8 A. Santamaria-Navarro et al.

obscurants, illumination can intensify the obstruction (Figure 3a). Fortunately,
visible-range cameras are widely available at low-cost, low-power and in small
form-factors, hence can be deployed pointing in multiple different directions.
Each direction can then run different VIO algorithm instances for each point-
ing direction. Note that this approach is in contrast to a single VIO pipeline
that uses multiple cameras. Such an approach requires accurate estimation of
extrinsic parameters and may not be possible with many COTS solutions. In-
stead, HeRO supports working with several VIO algorithms running in parallel
as opposed to requiring one tightly coupled VIO.

LIO methods are robust to low-lighting, environments with a lack of visual
features, and can work in a moderate amount of dust; however, they fail when the
environment has a self-similar structure. For example, when a drone is moving
in a long corridor with perfectly flat walls, the distance along the medial axis of
the corridor becomes unobservable.

TIO addresses many of these issues, but it generally fails when there is a
low thermal gradient in the environment, leading to few detectable features.
Examples of this include a drone flying over a ground made of concrete with
a downward facing thermal camera at night when the temperature reaches a
steady-state, or deep in subterranean environments, such as tunnels, which are
never exposed to sunlight as shown in Fig. 3b, 3d.

Finally, all the methods mentioned above are not robust to fast motions,
especially rotations. In conclusion, there is no single solution that is robust to
every failure case. Thus, HeRO runs several odometry algorithms in parallel to
maximize the probability of having at least one stable state estimation source
for planning and control.

Table 2: Summary of different failure modes for Inertial Odometry algorithms
xIO performance: Good Medium Bad

No Visual| Low |Self-similar| Uniform Dust/ Fast
Features |Light| Structure |Temperature|Obscurants|Motion

Algorithm

VIO
LIO
TIO

B. Confidence Checks

Once we have multiple sources of odometry algorithms with disparate modes
of failure, the next challenge is to identify those failures so that the optimal
odometry source can be selected. Before continuing in further detail, the defi-
nition of failure in this context will be clarified. At a high level, the goal is for
reliable, high-rate state estimates for control/planning and failure is anything
that jeopardizes that goal. Early identification of the failure allows the system
to perform actions to recover from failure or perform safety fall-backs to avoid

Towards Resilient Autonomous Navigation of Drones 9

hard collisions. To identify the type of failures as described in Table 2, HeRO
first performs confidence checks at the hardware-level by using the data from
sensors. The types of checks that are done here include:

1. Rate of sensor output

2. Overall intensity of the image

3. Intensity variation in the image

4. Distance between first and last return of a LIDAR beam (generally an indi-
cator of dust)

5. Number of invalid scan points

Next, HeRO performs confidence checks using data from the odometry algo-
rithms, where the goal is to catch the failures depicted in Figure 4, ideally before
they occur. These failures can come in a variety of forms, be it a gap in state
updates, a divergence of the estimate, or rapid jumps, all of which lead to issues
in control. The failure could be caused by limitations of the sensor or the overall
odometry algorithm. The checks to catch these failures include:

1. Rate of algorithm output, such as pose measurements, from the front-end
(catches gaps)
Rate of change of the position estimate (catch jumps)
Trace of covariance matrix on the estimates (catch divergence)
4. Algorithmic metrics on:
(a) Number/Quality of features tracked
(b) Number/Quality of In-lier features from scan matching/RANSAC
(¢) Rate of change of the above metrics

w o

(pos) (pos) \ (pos)

t t t

Gap Divergence Jump

Fig. 4: Different failure modes for odometry algorithms

There is much interesting research that can be done into developing ade-
quate confidence checks to catch failures early enough to prevent negative con-
sequences. An implementation of a subset of these these tests is shown in the
experiment section.

C. Switching Logic

Switching logic in HeRO uses the odometry estimates and confidence checks
to generate a state and quality estimate that will be used by the planner and

10 A. Santamaria-Navarro et al.

controller. Further, when the quality of an odometry algorithm is significantly
low, the switching logic also triggers a re-initialization of the failed odometry
algorithms.

The simplest version of this logic can use a ranking of odometry algorithms
and select the highest ranking output that has not failed. When that algorithm
fails a confidence check, then the next algorithm in the ranking is selected.
Another alternative that minimizes the number of switches is described along
with experimental results in the next section.

More advanced logic could be developed when multiple algorithms are work-
ing to generate a state estimate by performing voting that is weighted by the
quality of the algorithm. The comparison between streams also provides a third
avenue for confidence checks. For instance, with three or more streams, a voting
scheme can be used to identify outliers.

When switching between output state estimates, care is needed to ensure
the output state estimate is consistent, with continuous pose estimates. This
consistency can be achieved by iteratively composing an incremental pose from
the selected odometry source to the pose from the previous state estimate.

As described in the introduction, the architecture described here focuses on
a loosely coupled, multiplexing approach, as opposed to a tightly coupled, fused
approach. Nonetheless, a fusion of multiple algorithms and sensors can still be
incorporated into this framework, as another odometry algorithm, or by fusing
all state estimate streams that pass the confidence tests.

A quality estimate is generated for each state depending on the confidence
checks in the odometry source, as shown in Table 1. Note that ”medium” quality
of a given odometry algorithm can occur on the failure of the front-end of a VIO
(e.g. loss of feature tracking). In this case, IMU measurements can be propagated
to continue to get reliable velocity estimates for a short period even though
position estimates may be bad. Velocity estimates alone are sufficient for control
over such a period.

2.3 Planning and Control

The end goal of estimation is generally for planning and control (see Figure 1).
Here we treat planning and control as having three layers: behavior planning,
motion planning, and control. We discuss each layer and its adaptation to varying
levels of state quality. Our choices for how we discretize our estimate of state
quality is dictated by the needs of each layer within the planning and control
module.

The top layer within our planning and control framework functions as a state
machine, choosing what kind of behaviors the robot should execute depending on
the available quality of the state estimate. Table 1 outlines the specific decisions
this state machine takes within HeRO. The middle layer performs the appropri-
ate actions decided by the behavior planner, generating desired trajectories for
the robot to follow. The lowest layer, the controller, tracks desired trajectories
and closes the loop directly on the provided state estimates from HeRO.

Towards Resilient Autonomous Navigation of Drones 11

When reliable estimates of the robot’s position are available, a breadth of
autonomous actions which depends on position, is available for use. Examples of
these actions include building occupancy-grid type maps, running path planning
algorithms for reaching a desired location in the map, or reasoning about high-
level, global goals and executing them appropriately. Many of these autonomous
algorithms rely on continuous estimates of position, which HeRO provides. With-
out guaranteeing this continuity, many localization-dependent algorithms would
fail, such as building occupancy-grid based maps using LiDAR point cloud data.

Without reliable position estimates, the robot is restricted in the set of rea-
sonable behaviors it can take. We refer to these behaviors as being more local
in nature since they must depend on having reliable estimates of velocity, atti-
tude, accelerations, etc., but not position. Examples of such behaviors include
wall-following, obstacle avoidance and stay-in-place (See [11]). These behav-
iors are often robust and locally optimal. For instance, [12] showed fast, agile
flight of quadrotors using only instantaneous point-cloud information for obsta-
cle avoidance. While effective, these behaviors often require some hand-tuning
and assumptions on the topology of the environment in which the robot operates
(e.g. flying through a long tunnel can be accomplished with simple wall-following
behaviors).

If it is not possible to maintain high-quality estimation of velocities, then
all is not lost. Specific open loop behaviors can be performed to reduce the
likelihood of catastrophic loss of the vehicle. For example, a drone can maintain
zero roll and pitch and slowly reduce its thrust to gradually land. Once landed,
the chances of some odometry algorithm re-initializing dramatically increase.
By not moving, camera artifacts like motion blur are reduced. Moreover, by not
spinning the propellers, the effect of dust is mitigated.

Note that Table 1 differentiates between reliable estimates of velocity and
position in xy vs z. Generally, drones use a height sensor to keep track of the
ground, and with certain assumptions of the flatness of the terrain, can use this
height sensor in a loosely coupled estimation algorithm to estimate the relative
height and velocity in z of the drone. With this setup, landing can be safer and
more controlled, which is an example of behaviors we denote as Closed Loop in
z.

Given the state quality and estimate, our planning and control architecture
intelligently switches between behaviors, where each behavior relies on having
good quality estimates of subsets of the state. The planner decides which motion
planner to use (global or local), and what type of control to use (cascaded,
full PID, or open loop). Some odometry algorithms give mixed results on their
state estimation quality - for example, having reliable velocity estimates but an
intermittent loss of good position estimates. Here we take the approach to use
as much state information as possible while checking its reliability and accuracy.

12 A. Santamaria-Navarro et al.

Realsense

VLP-16 LIDAR ~ Qualcomm peap camera

Snapdragon

J Encoders

Pixhawk and Terapx64
IMU Height sensor

Fig.5: The Roll-o-copter: a hybrid ground/aerial robot

3 Validation and experiments

In this section, we show the validity of our state estimation framework with a
specific implementation. We set up the resiliency logic supervising three odome-
try algorithms using vision, a LIDAR and an IMU as sensing modalities: a loosely
coupled VIO with stereo cameras facing forward, a tightly coupled VIO with a
monocular camera facing up, and a LiDAR-inertial odometry algorithm with a
360 degree, 16 channel LiDAR. This setup provides redundancy of sensors and
heterogeneity in the algorithmic solution.

In the following we describe in detail the hardware, odometry algorithms,
confidence checks and multiplexing approaches used. Moreover we include ex-
perimental results obtained from the STIX event of the DARPA subterranean
challenge.

3.1 Hardware

We make use of the Roll-o-copter: a hybrid ground and aerial vehicle designed
to both fly and roll on the ground (see Figure 5). The Roll-o-copter is a multi-
rotor aerial vehicle with two passive wheels attached to each side of the frame.
Although this robot is designed to take advantage of both aerial and ground
terrains, in this work we focus on the aerial mobility of the vehicle and use it as
flying-only platform.

In flight, Roll-o-copter behaves like a normal multi-rotor, with a standard
set of electronic speed controllers (ESCs), motors and propellers. It possesses a

Towards Resilient Autonomous Navigation of Drones 13

Pixhawk! v2.1 as flight controller, as well as an on-board Intel NUC? i7 Core
computer. In addition to the standard multi-rotor hardware, we equipped the
robot with the following sensors:

» RealSense® RGBD camera. Composed by a stereo pair of infrared (IR)
cameras, an RGB camera and a structured light IR projector. This sensor
has its own on-board processing which provides RGB-D depth maps, point
clouds, color, and IR images.

¢ Velodyne 360° VLP-16* LiDAR. Rotary head with 16 LiDAR rangers,
providing a point cloud with a 360° azimuth angle and £15° elevation angle
field of view.

e TeraRanger evo 64px° IR time-of-flight range sensor. We use 2
rangers (upward and downward facing), providing top and bottom clear-
ances for collision avoidance.

* Pixhawk v2.1 flight controller. Composed by an on-board IMU (3-axis
gyroscopes and accelerometers) and processing, including a Kalman filter for
its own state estimation.

e Qualcomm Snapdragon®. A self-contained flight controller accompanied
by an IMU (3-axis gyroscopes and accelerometers) and two monocular cam-
eras (forward and upwards facing) for tightly coupled VIO.

5

3.2 HeRO stack

We validate the HeRO approach with two VIOs and one LIO in the stack of meth-
ods, which provide the required capabilities to fly in complex and perception-
challenging environments. These methods are running in parallel at different
frequencies and using different sensor sources, as detailed in the following.

e Infrared Stereo Visual Inertial Odometry. We take advantage of ORB-
SLAM2 (0S2) [13] running using images from the IR stereo camera (Re-
alSense RGBD). This approach produces 6D pose estimates (3D translations
and 3D rotations) and can run up to 60Hz. These estimations are fused with
IMU data (running at a frequency of around 1kHz) within the Pixhawk flight
controller. This approach is based on an Extended Kalman Filter [14] run-
ning on a delayed time horizon and a complementary filter producing the
inertial solution at the non-delayed time horizon.

Using a stereo odometry algorithm enables us to re-initialize it in flight
without the dependence of parallax movements such as in monocular VIO
methods. To keep the filter consistent we use a transform manager that

! http://www.pixhawk.org

2 https://www.intel.com/content/www /us/en/products/boards-
kits/nuc/boards/nuc7ibdnbe.html

3 https://software.intel.com /en-us /realsense/d400

* https://velodyneLiDAR.com/vlp-16.html

5 https://www.terabee.com/shop/3d-tof-cameras/teraranger-cvo-64px

5 https://developer.qualcomm.com/hardware/qualcomm-flight-pro

14

A. Santamaria-Navarro et al.

adapts the input signal to coherent values in the Mahalanobis distance sense.
Moreover, we are controlling using velocities and using a re-planning strategy
running at 20Hz, hence we choose robustness over accuracy and disable the
loop-closure features of OS2 (the drift in position is not affecting the filter
velocity estimates).

Monocular Visual Inertial Odometry. We use the Qualcomm’s Snap-
dragon Flight (QSF) platform running their commercial off-the-shelf VIO
from mvSDK as the second source of odometry. As in the case of OS2 odom-
etry, here we also incorporated some modifications to allow re-initialization
during flight. The incorporation of this approach also demonstrates the ca-
pability of our framework to easily integrate closed-source commercial VIO
solutions. The state estimation runs at 25Hz.

LiDAR Inertial Odometry. The third source of odometry consists on
fusing 6D pose estimates from a LIDAR odometry (LO) approach with IMU
data within a regular EKF scheme. The pose estimates from the LO are
produced at 20Hz and the IMU runs at 200Hz. We use the same IMU as
for the IR Stereo VIO but this time with the data externalized from the
Pixhawk flight controller at 200Hz.

Notice how the above choices allow us to use three different sensing modalities

(IR stereo forward-facing, monochrome monocular upward-facing and LiDAR)
with three different estimation algorithms. All sensors and approaches are prone
to different possible failures, minimizing the occasions where they all fail simul-
taneously, thus achieving the required level of robustness, as will be shown in
the following sections.

3.3 Resiliency logic

In these experiments we use the following confidence tests, set by observing the
types of failures the methods are prone to.

L]

Frequency: Most common mode of failures of OS2 occurs due to feature
tracking failures when the drone is executing a fast motion or due to presence
of featureless environments. In this case, the frequency of the measurement
updates goes down while failing. This policy helps catching ”data gaps”.
Estimation covariance: The uncertainty of the estimated pose from QSF
significantly increases during failure. Hence, we detect these failures by set-
ting a threshold on the trace of the estimation covariance matrix (experi-
mentally determined). This policy helps catching ”data divergence”.
Sudden position changes: If the estimation method results inconsistent,
it might still produce an output although the covariance of the estimations
might not reflect it. To detect these failures we set a confidence check on
sudden position changes to catch ”data jumps”.

In order to use the best of the inputs (i.e., best estimation) we choose for these

experiments a multiplexing strategy inside the resiliency logic. The procedure

Towards Resilient Autonomous Navigation of Drones 15

(©)

Fig. 6: Images from the robot frontal camera (a and b) and external view (c)
during a real experiment.

consists on running the above mentioned confidence checks on the estimations.
If an estimation is nor working or degraded we trigger the re-initialization of
its estimation engine and, if necessary, switch to a different estimation source.
In order to avoid possible jumps in the output we guarantee the continuity by
concatenating the relative motions between estimations. Notice that a fusion of
the estimates with traditional techniques is not possible here as there will arise
correlations between them that are difficult to be modelled.

3.4 Navigation in a mine, example of usage in the STIX event of
DARPA subterranean Challenge

The experimental scenario is part of the DARPA subterranean challenge” and,
specifically, we show results from the official integration event (STIX). In these
experiments we deploy the Roll-o-copter in the entrance of a gold mine and
set an autonomous exploration mission. Figure 6 shows an example of one of
the experimental runs, and shows how challenging is the environment in terms
of perception, clearly justifying the use of a resilient state estimation approach
(e.g., notice the dusty environment comparing Figure 6 a) where the robot did
not start and b) and c¢) while flying). In these experimental runs of the main
STIX event we were able to accomplish our missions with Roll-o-copter, exploring
two different entrances of the mine and validate our resilient state estimation
strategy.

" https://www.subtchallenge.com/

16 A. Santamaria-Navarro et al.

An example of these runs (mine entrance 1) is shown in Figure 7. Here
we show the different types of re-initialization, depending on which element
is re-initialized. A first case consists of partly re-initializing a loosely-coupled
approach, for example resetting one of the inputs of the fusion algorithm. In
this case, we cannot detect discontinuities at the resiliency logic level because
the fusion still produces outputs from the other sensor modalities; however, we
can still detect divergences of covariance which would indicate not to use its
estimate. In order to avoid inconsistencies in the fusion algorithms, whenever
we re-initialize a particular method that is used in a fusion later on, we keep
track of pose discontinuities with a transform manager. Figure 7 a) shows this
behaviour, and how re-initializing manually every 5s a LiDAR odometry (LO)
provokes LO position estimate jumps. Thanks to the transform manager, the
fusion of this LO with an IMU (LIO) is kept consistent and continuous (see
Figure 7 b) where we show the LIO output and an OS2 VIO for comparison
purposes). Figure 7 ¢) shows an example of resulting x-body axis velocities of
all methods in the HeRO stack, running two VIOs (VIOL is OS2 and VIO2 is
QSF) and the LIO test for the same experiment. In this run the resiliency logic
was directly selecting VIO1 (used for autonomous navigation) and it requested
several times a re-initialization of the VIO2 due to failures.

The modularity of the presented state estimation framework allow us to
run different methods on the HeRO stack. For example, in the case of a drone
where the available payload does not allow carring a 3D LiDAR, we can still use
redundant VIOs. An example of this case is shown in Figure 8 corresponding
to a different experiment in the entrance 2 of the mine. In these figures we
show several useful information that validates the use of the presented approach,
specifically:

* VIO estimations: we show the estimated position (first three plots) and
velocities (latter three plots) of OS2 (VIO1 in red with squares) and QSF
(VIO2 in green with triangles), together with the respective output of the re-
siliency logic (blue solid line). Notice how the resilient output does not always
overlap with the estimations because it keeps continuity during switches.

¢ Channel selection: On all Figure 8 we overlap the channel selected by the
resiliency logic (magenta and specification on the right axis) while switching
between methods.

¢ Re-initialization triggers: When a method is not passing the confidence
checks, it is required to re-initialize. These triggers are shown in all images
as vertical lines.

¢ Mobility services: This is the main motivation for this work. Depending on
the available estimations (full or partial state) we can make use of different
mobility services. The available mobility services are shown in all plots with
coloured areas. When there is at least one method providing the full state
(i.e., position and velocity estimates) we can run global mobility services
(e.g., trajectory or global target tracking). In those cases where there is no
full state available because we are fully re-initializing a method (i.e., the
method and its fusion engine), we cannot use position estimates for the

17

Towards Resilient Autonomous Navigation of Drones

[s]

(a) LIDAR odometry (LO) X-Y-Z positions with LO re-initialization trig-

gers every bs.

(e)
[aN]

- —

.

B
pal..al..:i..“.:i..rm
999999029
SEERESESR
PSRN WE
F] __ 1O
7 B
B]
B i | of A

o
e 1o
[an)
“““““““ s
jem)
“““““““ H s
()
“““““““““ s
S OO0 O O W0
N N AN A — _

[s]

(b) VIO (0S2) and LIO X-Y-Z position estimates with LO re-initialization

triggers every 5s.

— VIO2 re-init
LO re-init

100

120

(c) VIO (OS2) and LIO X velocity estimates with LO re-initialization

triggers every 5s.

Fig. 7: Results from a real experiment with the Roll-o-copter flying autonomously

in a tunnel (see Figure 6).

mobility services but velocity estimates are usually still available, hence we

e.g., wall following strategy controlling using

(

velocities). In case of not being able to re-initialize the estimation methods,
we fly on dead-reckoning so we can only use attitude mobility services. In

particular for this experiment, for safety reasons we are land after 3s of

can use local mobility services

dead-reckoning flight. This strategy helps us to let the dust settle down and

